Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов, созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера).
Его именем часто называют одно из самых популярных распределений вероятностей: нормальное, а в теории случайных процессов основным объектом изучения являются гауссовские процессы.
В конце XIX в. – начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К.Пирсон (1857-1936) и Р.А.Фишер (1890-1962).
В частности, Пирсон разработал критерий хи-квадрат для проверки статистических гипотез, а Фишер — дисперсионный анализ, теорию планирования эксперимента, метод максимального правдоподобия для оценки параметров.
В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э.Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В.Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.
Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований [2]:
- разработка и внедрение математических методов планирования экспериментов;
- развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;
- развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;
- широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.
1. История развития математической статистики.
Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов, созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера).
Медицинская Статистика
... результатов от применения статистико-математического метода». Особый интерес вызывает само название статьи - «Как нельзя собирать медицинскую статистику и как ее не ... количественный, математический этап -- на базе накопленных фактов исследуются количественные закономерности, создаются математические модели исследуемых явлений и объектов. Теория вероятностей и математическая статистика возникли ...
Его именем часто называют одно из самых популярных распределений вероятностей: нормальное, а в теории случайных процессов основным объектом изучения являются гауссовские процессы. В конце XIX в. – начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К.Пирсон (1857-1936) и Р.А.Фишер (1890-1962).
В частности, Пирсон разработал критерий хи-квадрат для проверки статистических гипотез, а Фишер — дисперсионный анализ, теорию планирования эксперимента, метод максимального правдоподобия для оценки параметров. В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э.Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В.Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.
Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований:
- разработка и внедрение математических методов планирования экспериментов;
- развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;
- развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;
широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.Вероятностно-статистические методы и оптимизация. Идея оптимизации пронизывает современную прикладную математическую статистику и иные статистические методы. А именно, методы планирования экспериментов, статистического приемочного контроля, статистического регулирования технологических процессов и др. С другой стороны, оптимизационные постановки в теории принятия решений, например, прикладная теория оптимизации качества продукции и требований стандартов, предусматривают широкое использование вероятностно-статистических методов, прежде всего прикладной математической статистики. В производственном менеджменте, в частности, при оптимизации качества продукции и требований стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку).
Это связано с ограниченностью информации, доступной на ранних этапах жизненного цикла продукта, и необходимостью прогнозировать технические возможности и экономическую ситуацию на будущее. Статистические методы должны применяться на всех этапах решения задачи оптимизации – при шкалировании переменных, разработке математических моделей функционирования изделий и систем, проведении технических и экономических экспериментов и т.д. При решении задач оптимизации, включая оптимизацию требований к качеству продукции и стандартам, используются все области статистики. То есть статистика случайных величин, многомерный статистический анализ, статистика случайных процессов и временных рядов, статистика объектов нечисловой природы.
Методология и методы принятия решения
... и методы принятия решения 1.1. Процесс и процедура принятия решений Для того чтобы принять управленческое решение, каждый ... статистическую; первичную и вторичную; директивную, распределительную, отчетную. Ценность полученной информации зависит от точности действия, поскольку правильно сформулированное действие предопределяет потребность в конкретной информации для принятия решения. Принятие решений ...
2.Историческая справка
Первые начала М. с. можно найти уже в сочинениях создателей теории вероятностей — Я. Бернулли (конец 17 — начало 18 веков), П. Лапласа (2-я половина 18 — начало 19 веков) и С. Пуассона (1-я половина 19 века).
В России методы М. с. в применении к демографии и страховому делу развивал на основе теории вероятностей В. Я. Буняковский (1846).
Решающее значение для всего дальнейшего развития М. с. имели работы русской классической школы теории вероятностей 2-й половины 19 — начала 20 веков (П. Л. Чебышев, А. А. Марков, А. М. Ляпунов, С. Н. Бернштейн).
Многие вопросы теории статистических оценок были по существу разработаны на основе теории ошибок и метода наименьших квадратов [К. Гаусс (1-я половина 19 века) и А. А. Марков (конец 19 — начало 20 веков)]. Работы А. Кетле (19 век, Бельгия), Ф. Гальтона (19 век, Великобритания) и К. Пирсона (конец 19 — начало 20 веков, Великобритания) имели большое значение, но по уровню использования достижений теории вероятностей отставали от работ русской школы. К. Пирсоном была широко развёрнута работа по составлению таблиц функций, необходимых для применения методов М. с. В создании теории малых выборок, общей теории статистических оценок и проверки гипотез (освобожденной от предположений о наличии априорных распределений), последовательного анализа весьма значительна роль представителей англо-американской школы [Стьюдент (псевдоним У. Госсета), Р. Фишер, Э. Пирсон — Великобритания, Ю. Нейман, А. Вальд — США], деятельность которых началась в 20-х годах 20 века. В СССР значительные результаты в области М. с. получены В. И. Романовским, Е. Е. Слуцким, которому принадлежат важные работы по статистике связанных стационарных рядов, Н. В. Смирновым, заложившим основы теории непараметрических методов М. с., Ю. В. Линником, обогатившим аналитический аппарат М. с. новыми методами. На основе М. с. особенно интенсивно разрабатываются статистические методы исследования и контроля массового производства, статистические методы в области физики, гидрологии, климатологии, звёздной астрономии, биологии, медицины и другие.
Заключение.
Математическая статистика, раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. В этом случае статистическими данными называют информацию о количестве объектов в более или менее обширном наборе, обладающих определенными характеристиками.